显然,哥德巴赫猜想就可以写成“1+1“。
在这一方向上的进展都是用所谓的筛法得到的,效果也极为显著。
从1920年开始,挪威的布朗证明了‘9+9’。
1924年,德国的拉特马赫证明了‘7+7’。
1932年,英国的埃斯特曼证明了“6+6“。
1937年,意大利的蕾西先后证明了“5+7“,“4+9“,“3+15“和“2+366“。
1938年,苏连的布赫夕太勃证明了“5+5“。
1940年,苏联的布赫夕太勃证明了“4+4“。
1956年,华国的王元证明了“3+4“,稍后又证明了“3+3“和“2+3“。
1948年,匈牙利的瑞尼证明了“1+c“,其中c是一很大的自然数。
1962年,华国的潘承洞和苏联的巴尔巴恩证明了“1+5“,中国的王元证明了“1+4“。
1965年,苏联的布赫夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1+3“。
1966年,中国的陈景润证明了“1+2“。
这些便是通过殆素数取得的成绩。
例外集合,则是在数轴上取定大整数x,再从x往前看,寻找使得哥德巴赫猜想不成立的那些偶数,即例外偶数。
x之前所有例外偶数的个数记为E(x)。
我们希望,无论x多大,x之前只有一个例外偶数,那就是2,即只有2使得猜想是错的。
这样一来,哥德巴赫猜想就等价于E(x)永远等于1。
当然了,直到现在还不能证明E(x)=1;但是能够证明E(x)远比x小。
在x前面的偶数个数大概是x2;如果当x趋于无穷大时,E(x)与x的比值趋于零,那就说明这些例外偶数密度是零,即哥德巴赫猜想对于几乎所有的偶数成立。
这就是例外集合的思路。
维诺格拉多夫的三素数定理发表于1937年。
在例外集合这一途径上,仅仅只是一年的时间过去,就同时出现了四个证明,其中包括华罗庚先生的著名定理。
如果偶数的哥德巴赫猜想正确,那么奇数的猜想也正确。
我们可以把这个问题反过来思考。
已知奇数N可以表成三个素数之和,假如又能证明这三个素数中有一个非常小,譬如说第一个素数可以总取3,那么我们也就证明了偶数的哥德巴赫猜想。
这个思想就促使潘承东先生在1959年,即他25岁时,研究有一个小素变数的三素数定理。
这个小素变数不超过N的θ次方。
我们的目标是要证明θ可以取0,即这个小素变数有界,从而推出偶数的哥德巴赫猜想。
潘承东先生首先证明θ可取14。
后来的很长一段时间内,这方面的工作一直没有进展,直到1995年占涛教授把潘老师的定理推进到7120。
这个数已经比较小了,但是仍然大于0。
哥德巴赫猜想证明的困难在于,任何能找到的素数,在以下式中都是不成立的。
2*3*5*7*。
。
。
。
。
。
*PN*P=PN+(2*3*5*7*。